Rutgers University: Complex Variables and Advanced Calculus Written Qualifying Exam
 August 2009 Day 1: Problem 4 Solution

Exercise. Let $f(z)=3 z^{5}-5 z^{3}-z-\frac{1}{2}$. How many zeros (counted with multiplicity) does f have in the annulus $\{z \in \mathbb{C}, 1<|z|<2\}$? Prove your statement.

Solution.

Rouche's Theorem: f, g analytic in open set U and γ a simple path in U, with its interior contained in U and with parameter interval I. If f has no zeros on $\gamma(I)$ and $|f(z)-g(z)| \leq|g(z)|$ on $\gamma(I)$ then f and g have the same number of zeros, counting order, inside γ

$$
\{z \in \mathbb{C}: 1<|z|<2\}=D_{2}(0) \backslash D_{1}(0)
$$

So the number of zeros in annulus $=$ [number of zeros in $\left.D_{2}(0)\right]-\left[\right.$ number of zeros in $\left.D_{1}(0)\right]$ $D_{2}(0): \quad g(z)=6 z^{5} \quad$ and $\quad \gamma: \delta D_{2}(0)$

The zeros of $g(z)$ are: 0 with order 5 all in $D_{2}(0)$
On $\delta D_{2}(0),|g(z)|=\left|6 z^{5}\right|=6\left|z^{5}\right|=6 \cdot 2^{5}=192$

$$
|f(z)-g(z)|=\left|-10 z^{3}-2 z-1\right| \leq 10|z|^{3}+2|z|+1=80+4+1=85<192=|g(z)|
$$

By Rouche's Theorem, f and g have the same number of zeros in $D_{2}(0)$
$\Longrightarrow f$ has 5 zeros in $D_{2}(0)$
$D_{1}(0): \quad g_{2}(z)=-10 z^{3}-2 z=-2 z\left(5 z^{2}+1\right) \quad$ and $\quad \gamma_{2}: \delta D_{1}(0)$
The zeros of $g_{2}(z)$ are: $0, \frac{1}{\sqrt{5}},-\frac{1}{\sqrt{5}}$ with order 1 and all in $D_{1}(0)$
On $\delta D_{1}(0),\left|g_{2}(z)\right|=\left|-10 z^{3}-2 z\right| \geq 10|z|^{3}-2|z|=10-2=8$
$|f(z)-g(z)|=\left|6 z^{5}-1\right| \leq 6|z|^{5}-1=7<8 \leq|g(z)|$
By Rouche's Theorem, f and g have the same number of zeros in $D_{1}(0)$ $\Longrightarrow f$ has 3 zeros in $D_{1}(0)$

Thus, f has $5-3=2$ zeros in the annulus.

